Non-Linearity of Portfolio Optimization

Ed Tricker¹, Thomas Feng², Guodong Wang³

Abstract
This note is an in-depth study of constrained mean-variance optimization in the context of combining several systematic trading signals. We analyze whether the solution of such optimization depends linearly on the input variables. The conclusion is the contrary that such portfolio optimization exhibits a multitude of non-linearity. We conclude by discussing implications for investors.

Keywords
Portfolio Optimization

¹CIO, Quantitative Strategies
²Director of Quantitative Research
³Quantitative Research Manager

1. Introduction
The goal of portfolio optimization is to determine an optimal combination of assets within a portfolio according to some objective. An optimal portfolio can have many advantages, for example, lower volatility, higher risk-adjusted returns or balanced exposures. A critical development was modern portfolio theory, first described by Markowitz (1952), which introduced the idea of mean-variance analysis and a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. In the years since, mean-variance optimization (MVO) has become a commonly used portfolio construction method. However, optimizing a portfolio can come at the cost of transparency – particularly in terms of portfolio attribution. In this Research Note, we provide some mathematical results for why it is not always possible to precisely attribute performance in optimal portfolios.

Three Key Equations
In a typical systematic trading strategy, several signals are supplied as expected returns \(r_i \), which are combined linearly into a single set \(\tilde{r} = \sum_i a_i r_i \) using signal weights \(a_i \). The portfolio is then optimized subject to a volatility target, plus one or more linear constraints such as total capital usage, maximum position size limits, etc. Denote by \(w = O(\tilde{r}) \) the function that associates an optimized portfolio \(w \) with a set of expected returns \(\tilde{r} \). One might reasonably expect several forms of linear behavior:

\[
O(\tilde{r}) \propto M \tilde{r}, \text{ for some matrix } M, \tag{1}
\]

which intuitively means that a stronger/weaker expected return leads to a proportionally bigger/smaller position;

\[
O \left(\sum_i a_i r_i \right) = \sum_i c_i O(r_i), \text{ for some } c_i, \tag{2}
\]

which expresses the optimized blended portfolio as a linear combination of optimized component portfolios;

\[
[c_i] \propto [a_i], \text{ for the } c_i, a_i \text{ above}, \tag{3}
\]

which means that a signal’s contribution in the optimized portfolio is proportional to its contribution in expected returns.

In the pages that follow, we work progressively to show that all of these expectations can be rejected. Non-linearity is present at multiple levels in portfolio optimization.

2. MVO with Volatility Target
Consider a set of expected returns \(r \) for a portfolio of assets having market covariance matrix \(\Sigma \).

It is well known that in the absence of constraints we can solve the MVO problem with portfolio weights \(w \) such that \(w \propto \Sigma^{-1} r \). Note that we can set \(M = \Sigma^{-1} \) to satisfy the linearity condition in Equation 1, which provides a motivation for the results that follow.

More specifically, if we want a portfolio with volatility \(\sigma \) we can specify the problem as:

\[
\max_w r'w, \text{ such that } w'\Sigma w \leq \sigma^2, \tag{4}
\]

for which there exists a closed-form solution\(^1\) for the allocation weights:

\[
w = \frac{\sigma}{\sqrt{r'\Sigma^{-1}r}} \Sigma^{-1}r. \tag{5}
\]

Now suppose we have two sets of expected returns \(r_1 \) and \(r_2 \). For each set we can solve the MVO problem:

\[
w_1 = \frac{\sigma}{\sqrt{r_1'\Sigma^{-1}r_1}} \Sigma^{-1}r_1, \]

\[
w_2 = \frac{\sigma}{\sqrt{r_2'\Sigma^{-1}r_2}} \Sigma^{-1}r_2.
\]

If we form a blended portfolio as a combination of \(r_1 \) and \(r_2 \) denoted by \(\tilde{r} = a_1 r_1 + a_2 r_2 \), we can similarly solve for the MVO weights as:

\[
w = \frac{\sigma}{\sqrt{\tilde{r}'\Sigma^{-1}\tilde{r}}} \Sigma^{-1}\tilde{r}
= \frac{\sigma \Sigma^{-1}(a_1 r_1 + a_2 r_2)}{\sqrt{(a_1 r_1 + a_2 r_2)'\Sigma^{-1}(a_1 r_1 + a_2 r_2)}.}
\]

\(^1\)See Appendix A.
From which it follows immediately that \(\bar{w} \neq a_1w_1 + a_2w_2 \), rather:
\[
\bar{w} = \frac{L_1}{L} a_1 w_1 + \frac{L_2}{L} a_2 w_2,
\]
where we define
\[
L = \sqrt{r' \Sigma^{-1} r},
\]
and
\[
\bar{L} = \sqrt{r' \Sigma^{-1} r} = \sqrt{(a_1 r_1 + a_2 r_2)' \Sigma^{-1} (a_1 r_1 + a_2 r_2)}.
\]
The post-MVO weights between the two sets change from \(\bar{w} \) to \(c_i \), which are bounded by both volatility and linear constraints. The linear constraint necessarily implies that \(c_1 + c_2 = 1 \). However, unless \(w_1 \) and \(w_2 \) are equal, their correlation will be less than 1, and the volatility of \(c_1 w_1 + c_2 w_2 \) will be less than \(\sigma \). We conclude that there must be a non-zero residual portfolio \(\epsilon \) involved:
\[
\bar{w} = c_1 w_1 + c_2 w_2 + \epsilon,
\]
which means the optimal portfolio \(\bar{w} \) is not a linear combination of optimized component portfolios \(w_i \), rejecting Equation 2.

3. Adding a Linear Constraint

Consider adding a linear constraint to our MVO problem with volatility target:
\[
\max_w r' w, \text{ such that } \begin{cases} w' \Sigma w \leq \sigma^2, \\ k' w \leq b. \end{cases} \tag{6}
\]
For example we can set up a maximal capital usage constraint by setting \(k = 1 \), the unit vector.

For ease of notation, it is convenient to define several auxiliary variables:
\[
F = k' \Sigma^{-1} k, \quad G = r' \Sigma^{-1} r, \quad H = k' \Sigma^{-1} r, \quad J = \sqrt{\sigma^2 F - b^2}, \quad \text{if } \sigma^2 F - b^2 \geq 0. \tag{7}
\]
When the volatility target is not too tight relative to the linear constraint (expressed by the technical condition \(\sigma^2 F - b^2 \geq 0 \)) there exists a closed-form solution\(^2\) for the allocation weights, which are bounded by both volatility and linear constraints:
\[
w = J \Sigma^{-1} r + \frac{b - H J}{F} \Sigma^{-1} k. \tag{9}
\]

As in the previous section, suppose we blend two sets of expected returns \(\bar{r} = a_1 r_1 + a_2 r_2 \), we can form the optimized blended portfolio:
\[
\bar{w} = J \Sigma^{-1} \bar{r} + \frac{b - H J}{F} \Sigma^{-1} k = J \Sigma^{-1} (a_1 r_1 + a_2 r_2) + \frac{b - H J}{F} \Sigma^{-1} k.
\]

Here we see that \(\bar{w} \) now has a residual component proportional to \(\Sigma^{-1} k \) that is not a linear combination of \(r_i \), rejecting Equation 1. We can take this analysis further by considering the individual component portfolios formed by MVO on each set of expected returns with both volatility target and linear constraint:
\[
w_1 = J_1 \Sigma^{-1} r_1 + \frac{b - H_1 J_1}{F_1} \Sigma^{-1} k, \quad w_2 = J_2 \Sigma^{-1} r_2 + \frac{b - H_2 J_2}{F_2} \Sigma^{-1} k,
\]
and ask whether there exist coefficients \(c_i \) such that
\[
w = c_1 w_1 + c_2 w_2.
\]

Note that all three portfolios \(w, w_1, w_2 \) are bounded by both volatility and linear constraints. The linear constraint necessarily implies that \(c_1 + c_2 = 1 \). However, unless \(w_1 \) and \(w_2 \) are equal, their correlation will be less than 1, and the volatility of \(c_1 w_1 + c_2 w_2 \) will be less than \(\sigma \). We conclude that there must be a non-zero residual portfolio \(\epsilon \) involved:

4. A Numerical Example

We present a simple example of two sets of signals for 3 assets. (Table 1). Further, we assume \(\Sigma = I_3 \) the identity matrix, \(\sigma^2 = 0.5 \), \(k = 1 \) and \(b = 1 \). We observe that the optimal solution to the portfolio of combined signals is different by a non-zero residual component \(\epsilon \) compared to the combination of the individually optimized portfolios.

<table>
<thead>
<tr>
<th>(a_1 = 0.5)</th>
<th>(a_2 = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c_1 = 0.556)</th>
<th>(c_2 = 0.556)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>(w_2)</td>
</tr>
<tr>
<td>0.167</td>
<td>0.667</td>
</tr>
<tr>
<td>0.667</td>
<td>0.167</td>
</tr>
<tr>
<td>0.167</td>
<td>0.167</td>
</tr>
</tbody>
</table>

Table 1. A numerical example demonstrating how a portfolio cannot be decomposed into its constituents. Instead a residual component remains.

We can also construct a graphical representation of this result, demonstrated in Figure 1. The 3-asset portfolios that we considered can be represented by points in 3-dimensional space. The volatility target is represented by a sphere (since the equation of a sphere is given by \(x^2 + y^2 + z^2 = r^2 \), which intersects with the linear constraint represented by a plane. The intersection, which is a circle, represents all possible optimized portfolios that are bounded by both constraints. The portfolios \(w_1, w_2 \) and \(\bar{w} \) are distinct points on this circle. The dotted line between \(w_1 \) and \(w_2 \) represent portfolios that are linear combinations \(c_1 w_1 + c_2 w_2 \) that lie on the linear constraint. However, it is easy to see that these portfolios are inside the sphere and fall short of the volatility target. Similarly, \(\bar{w} \) does not lie on the dotted line.

\(^2\)See Appendix B.
5. Conclusion

While portfolio optimization is a commonly used and effective tool to enhance risk-adjusted returns, its use can come with the expense of reduced transparency in terms of portfolio attribution.

In particular, when evaluating a trading strategy constructed from multiple signals combined with portfolio optimization, investors should not necessarily expect portfolio and performance attributions to add up precisely in a simple linear fashion.

Rejection of Equation 1 means portfolio allocation weights are not directly proportional to signal strength. Rejection of Equation 2 means an optimized portfolio that combines several component signals has a residual piece that causes its performance to deviate from aggregated performance of underlying component strategies. Rejection of Equation 3 means that giving one signal a higher weighting may not lead to a commensurate increase of its contribution in the combined portfolio.

Appendix A

Derivation of Equation 5 by solving Equation 4. For a constrained optimization problem we use Lagrangian multipliers method:

\[r = 2\lambda \Sigma w, \]
\[w = \frac{1}{2\lambda} \Sigma^{-1} r, \]
\[\sigma^2 = w' \Sigma w = \frac{1}{4\lambda^2} r' \Sigma^{-1} r, \]
\[\frac{1}{2\lambda} = \frac{\sigma}{\sqrt{r' \Sigma^{-1} r}}, \]

substituting Equation 11 into Equation 10 yields the solution.

References

Legal Disclaimer

THIS DOCUMENT IS NOT A PRIVATE OFFERING MEMORANDUM AND DOES NOT CONSTITUTE AN OFFER TO SELL, NOR IS IT A SOLICITATION OF AN OFFER TO BUY, ANY SECURITY. THE VIEWS EXPRESSED HEREIN ARE EXCLUSIVELY THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REPRESENT THE VIEWS OF GRAHAM CAPITAL MANAGEMENT, L.P. OR ANY OF ITS AFFILIATES (TOGETHER, "GRAHAM"). NEITHER THE AUTHOR NOR GRAHAM HAS ANY OBLIGATION, AND SHOULD NOT BE EXPECTED, TO UPDATE, CORRECT OR DELETE THE INFORMATION CONTAINED HEREIN IN LIGHT OF SUBSEQUENT MARKET EVENTS OR FOR ANY OTHER REASON. GRAHAM MAY TAKE POSITIONS OR MAKE INVESTMENT DECISIONS THAT ARE INCONSISTENT WITH THE VIEWS EXPRESSED HEREIN. THE INFORMATION CONTAINED HEREIN IS NOT INTENDED TO PROVIDE ACCOUNTING, LEGAL, OR TAX ADVICE AND SHOULD NOT BE RELIED ON FOR INVESTMENT DECISION MAKING.

THE INFORMATION SET FORTH HEREIN IS SUBJECT IN FULL TO THE TERMS OF USE OF THE GRAHAM CAPITAL MANAGEMENT WEBSITE AND MAY NOT BE REPRODUCED, MODIFIED, DISTRIBUTED OR OTHERWISE USED WITHOUT GRAHAM’S EXPRESS WRITTEN CONSENT.